As viruses are exposed to environmental selection pressures, they mutate and evolve, generating variants that may possess enhanced virulence. Some of the primary concerns that public health officials have as these new variants continue to emerge include their viral transmissibility, reinfection rates, disease severity, and vaccine effectiveness. SARS-CoV-2. Image Credit: ImageFlow/Shutterstock.com How do RNA viruses mutate? The mutation rate of single-stranded ribonucleic acid (ssRNA) viruses is observed to be much higher than organisms that possess single-stranded deoxyribonucleic acid (ssDNA), and many times more than those with double-stranded DNA (dsDNA). Not all mutations necessarily increase virulence and, in the majority of cases, may in fact be deleterious or inconsequential. Therefore, organisms must find an equilibrium between a high mutation rate that allows them to adapt to changing environmental conditions, and a low one that lessens the incidence of catastrophic mutations. Small DNA viruses may encode their own DNA repair, and ...
your submission has already been received.
OK
Please enter a valid Email address!
Submit
The most relevant industry news & insight will be sent to you every two weeks.