November 2, 2017 Source: medicalnewstoday 678
The discovery of these genes could open the door to much-needed personalized treatments for cancer, say the researchers.
First study author Jonas Demeulemeester, of the Francis Crick Institute in the United Kingdom, and colleagues recently reported their findings in the journal Nature Communications.
Cancer arises when cells grow and divide uncontrollably, forming tumors.
Human cells normally contain two copies of tumor suppressor genes, which work to prevent tumor formation by slowing down cell division and growth. When these genes are deleted — through genetic mutations, for example — this gives rise to cancer development.
As a general rule, in order for tumors to form, both copies of the tumor suppressor genes must be malfunctioning in a cell. This is because a single functioning tumor suppressor gene can still produce the proteins needed to decelerate cell division and growth.
But the researchers note that identifying these double-gene abnormalities is challenging. One problem is that tumors often contain a mix of healthy and cancerous cells in varying proportions, making it difficult to determine whether one or two tumor suppressor genes are missing in cancer cells.
They have created a statistical model — which utilizes single nucleotide polymorphism analysis — that could help to overcome such problems. So far, it has helped them to identify an array of new tumor suppressor genes.
By Dduyour submission has already been received.
OK
Please enter a valid Email address!
Submit
The most relevant industry news & insight will be sent to you every two weeks.